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Moving grids are of interest in the numerical solution of
hydrodynamical problems and in numerical relativity. We show that
conventional integration methods for the simple wave equation in ane
and more than cne dimension exhibit 8 number of instabilities on
moving grids. We introduce twoe techniques, which we call causal
reconnection and time-synwnetric ADI, which together allow integration
of the wave equation with absolute local stabiity in any number of
dimensions on grids that amay move very much faster than the wave
speed and that can even accelerate. These methods allow very long
time-steps, are fully second-order accurate, and offer the computational
efficiency of operator-splitting. We develop causal reconnection first in
the one-dimensional case; we find that a conventional implicit integration
scheme that is unconditionally stable as long as the speed of the grid
is smaller than that of the waves nevertheless turns unstable whenever
the grid speed increases beyond this value. We introduce & notion of
focal stability for difference equations with variable coefficients. We
show that, by “reconnecting” the computational molecule at each
time-step in such a way as to ensure that its members at different time-
steps are within one another's causal domains, one eliminates the
instability, even if the grid accelerates. This permits very long time-steps
on rapidly moving grids. The method extends in a straightforward and
efficient way to more than one dimension. However, in more than one
dimension, it is very desirable to use operator-splitting techniques to
reduce the computational demands of implicit methods, and we find
that standard schemes for integrating the wave equation—Lees’ first
and second alternating direction implicit {ADI) methods—go unstable
for quite small grid velocities, Lees’ first method, which is only first-
order accurate on a shifting grid, has mild but nevertheless significant
instabilities. Lees’ second method, which is second-order accurate, is
very unstable. By adopting a systematic approach to the design of AD|
schemes, we develop a new ADI method that cures the instability for all
velocities in any direction up to the wave speed. This scheme is
uniquely defined by a simple physical principle: the ADI difference
equations should be invariant under time-inversion, {The wave
equation itself and the fully implicit difference equations satisfy this
criterion, but neither of Lees” methods do.) This new time-symmetric
ADI scheme is, as a bonus, second-order accurate. It is thus far maore
efficient than a fully implicit scheme, just as stable, and just as accurate.
By implementing causal reconnection of the computational molecules,
we extend the time-symmetric AD! scheme to arrive at a scheme that is
second-order accurate, computationalty efficient, and uvnconditionally
lacally stable for all grid speeds and long time-steps. We have tested the
method by integrating the wave eguation on a rotating grid, where it
remains stable even when the grid speed at the edge is 15 times the
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wave speed. Because our methods are based on simple physical
principles, they should generalize in a straightforward way to many
other hyperbolic systems. We discuss briefly their application to
general relativity and their potential generalization to fluid dynamics.
© 1994 Academic Press. Inc.

L. INTRODUCTION

In the numerical study of wave phenomena it is oflen
necessary to use a reference frame that is moving with
respect to the medium in which the waves propagate. This
could be the case, for example, when studying the waves
generated by a moving source, where it may prove con-
venient to use a reference frame attached to this source. In
some cases, one may even need to use a frame that moves
faster than the waves themselves, as in the case of a super-
sonic flow. In general relativity, especially in black-hole
problems, one may have to use a grid that shifts rapidly,
even faster than light. All these problems arise in more than
one spatial dimension, where computational efficiency may
make stringent demands on the algorithm. It is a common
experience 1o find that standard algorithms seem to go
unstable in realistic problems. In this paper, by studying the
simple wave equation, we show that the consistent applica-
tion of two fundamental physical principles—causality and
time-reversal-invanance—produces remarkably  stable,
efficient, and accurate integration methods. These principies
can casily be applied to more complex physical systems,
where we would expect similar beneflits.

Our principal motivation for studying these techniques is
the development of suitable algorithms for the numerical
simulation of moving, interacting black holes. Relativists
have long acknowledged the importance of using shifting
grids in some problems, but to our knowledge there has
been no systematic study of the effects of such shifts on
the stability of numerical algorithms. In the next two
paragraphs we deveiop this motivation. Readers not
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concerned with numerical relativity may skip these without
ioss of continuity.

Let us consider the requirements that black-hole
problems will make of our algorithms. Within the context of
the 3+ 1 formalism of general relativity 1, 2], it would
seem to be desirable to develop methods on a quasi-
rectangular three-dimensional grid, so that no special
coordinate features would prevent one from studying quite
general problems. If we imagine a picture in which a black
hole moves “through” such a grid, much the way a star
would if it were interacting with another, then some
requirements become clear:

1. Grid points will move from outside to inside the
horizon, but the grid as a whole should not be sucked in.
This may require an inner boundary to the grid, say on a
marginally trapped surface, and this boundary will have to
move at faster than the speed of light. Grid points may cross
this boundary and be forgotten, at least temporarily, but
others will emerge on the other side of the boundary.

2. Grid points that so emerge will then move from inside
to outside the horizon as the hole passes over them; this will
require grids that shift faster than light. This is inescapable
unless one ties the grid to the hole as it moves.

3. If two black holes begin in orbit around one another,
then it may be desirable to adopt a grid that rotates with
respect to infinity, in which the holes move relatively slowly
at first. In such a grid one would expect that one could take
long time-steps without losing accuracy, since not much
happens initially. One therefore would like to be free of the
Courant condition on time-steps; ie., one wants to use
implicit methods.

4. Integrating the equations of general relativity on a
grid with reasonable resolution will tax the capacity of the
best available computers for some time to come. Full
implicit schemes are very time-consuming in more than one
spatial dimension, because they require the inversion of
huge sparse matrices. Alternating direction implicit {ADI1)
schemes reduce this burden enormously by turning the
integration into a succession of one-dimensional implicit
integrations, sc an ADI scheme that can cope with grid
shifts is very desirable.

In this paper we show that it should be possible to
develop stabie methods that satisfy the last three
requirements above: ADI schemes that are absolutely stable
and computationally efficient, even on grids that shift at
many times the speed of light. As a bonus, our ADI methods
preserve the second-order accuracy of the fully implicit
equations. The first requirement, that of dealing with an
inner boundary that moves faster than light, is closely
related to these techniques and will be addressed clsewhere.

Having these requirements in mind, we have studied the
effects that the use of a moving reference frame has on the

finite difference approximation to the simple wave equation,
centering our attention particularly in the stability proper-
ties. The wave equation is the simplest system, so the
instabilities we find in the standard ADI methods should
certainly also be present when they are applied to more
realistic physical systems. Of course, the wave equation is
much simpler than other systems, so it is possible that
methods that stabilize its integration will not extend to
other systems. However, the principles that we find here are
of such a fundamental physical nature that it seems certain
that they should be applied wherever possible. Other kinds
of instabilities may of course arise in complex systems,
especially those directly due to nonlinearity, but we feel
that moving-grid instabilities are likely to be cured by the
methods we describe here.

We shall conclude this introductory section by sumtma-
rizing the approach and results of the following sections. In
the second section we develop the mathematical framework
of shifting grids. Then in Section 3 we study the one-dimen-
sional wave equation. We find simple implicit finite
difference schemes that are locally stable for any speed up to
that of the waves, even when the grid is accelerating as well
as moving. When formulated on a grid that is moving, and
even accelerating, it is not immediately obvious how one
defines stability; solutions of the differential equation do not
have simple harmonic time-dependence in this frame. We
find that a satisfactory criterion for local stability of these
simple schemes is that no solutions of the difference
equations should grow faster anywhere on the grid than
local solutions of the differential equation.

However, as soon as the reference frame moves faster
than the wave speed, these schemes become highly unstable.
We trace the origin of this instability to the fact that
the computational molecules no longer represent in an
adequate way the causal relationships between grid points.
We find that by modifying the molecules so that they link a
given point on one time-slice with one on the next one that
is within the first point’s cone of characteristics (its forward
“light cone”), one can restore stability. We discuss one
algorithm for doing this in Appendix B.

We call this causal reconnection. Tt is important to note
that this has a minimal impact on the integration scheme;
for implicit schemes, the matrix that must be solved for the
solution at a given time-step is constructed only from the
relations between grid-points at that time-step, while causal
reconnection affects only the relations between points on
different time-steps. Thus, it can be incorporated into the
part of the algorithm that constructs the “inhomogeneous
terms” that generate the right-hand side of the implicit
matrix equation. For the one-dimensional wave equation,
the extra work nvolved in seeking out causally related grid
points can be significant, but it becomes a smaller propor-
tion of the overhead in more than one dimension, and for
complicated systems of equations, such as one has in
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general relativity, the overhead will be a negligible fraction
of the total work per time-step. We have tested causal recon-
nection and found it to be stable even on grids moving at
many times the speed of the waves. It is also insensitive to
the acceleration of the grid.

We then move our attention in Section 4 to operator-
splitting ADI methods [4], which are computationally
efficient ways of implementing implicit schemes in more
than one dimension. We find it helpful to derive ADI
schemes from a more systematic point of view than one
usually finds in expositions of this technique. The goal is to
add extra terms to a set of difference equations that (i} do
not change its accuracy, but that (ii) replace the large
sparse non-tridiagonal matrix which has to be solved in
implicit schemes with a matrix that is a simple product of
tridiagonal matrices of the one-dimensional form, which are
easy to solve. The extra terms are related to the “left-over”
terms that appear as the difference between the true
operator and its factored replacement acting on the data
values on the final time-step. These final time-step terms
must be climinated. They are in effect replaced by similar
terms from earlier time-steps, which replacement makes no
difference when At — 0, but which removes them from the
matrix inversion and allows them to be included as part of
the inhomogeneous terms in the matrix solution. The new
equations will then be a valid approximation to the differen-
tial equation but which can be solved by a succession of
(rapid) one-dimensional tridiagonal matrix solutions.

When subjected to the same stability analysis as we
devised for causal reconnection, the standard ADI methods
show instabilities even when the reference frame moves very
slowly. The instability is most marked in Lees’ second
method, in which the extra terms added in are of second
order and therefore do not degrade the accuracy of the full
implicit scheme. The instability is also present, albeit more
weakly, in Lees’ first scheme, which is only first-order
accurate.

We trace these instabilities to the fact that the extra terms
added in either of the standard methods break the time-
reversal invariance exhibited by the original differential
equation and by the fully implicit difference equations.
Demanding that the extra terms be time-symmetric uniquely
determines an ADI scheme that is essentially a hybrid of
Lees’ first and second methods. This time-symmetric ADI
method turns out to be fully stable for all grid shifts up to
the wave speed. Although not built in as a requirement, the
new method also turns out to be second-order accurate.

The method can then be extended to grid speeds larger
than the wave speed by a direct generalization of the causal
reconnection approach developed for the one-dimensional
case. We demonstrate this by performing an integration on
a rotating grid whose edge moves faster than the wave
speed.

In Appendix A, we derive the wave equation in the

accelerating coordinate system using the efficient tensorial
techniques of relativity. In Appendix B, we discuss one
method of implementing causal reconnection.

2. THE WAVE EQUATION ON A MOVING GRID

The wave equation is a good testing ground for any new
algorithms for hyperbolic systemns. The equations governing
many wave systems can be reduced to the standard wave
equation, and its cone of characteristics has the causal
structure of space-time. We shall use it to test methods for
integrating hyperbolic systems on moving grids.

We consider the wave equation in an arbitrary number of
spatial dimensions n,
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(2.1)

written in a standard inertial coordinate system denoted
by (¢, &N.

We are interested in finding a finite difference approxima-
tion to this equation using a grid of points that moves with
an arbitrary non-uniform speed. Moreover, we will assume
that the speed of each grid point can change with time. In
order to represent this situation, we need to introduce a
second coordinate system (¢, x’) that will be comoving with
the grid. We introduce these coordinates in the continuous
case by a transformation of the form

= X1, €5), (2.2)

We have not changed the time coordinate, so we assume
that the identification of surfaces of constant time does not
change. This is, thus, not the usual Lorentz transformation
of special relativity, so there is no reason for the form of the
wave equation to remain invariant. This will have the
implication that, in finite differences, the time interval
between f=const slices will be constant, independent of
position. For problems in general relativity, this is some-
what of a restriction, but we do not feel it is a serious one.
If the causal relations are properly taken into account, then
a spatial dependence in the lapse function ought not to
change our physical conclusions.

In Appendix A we show that the wave equation takes the
following form in the new coordinates (¢, x):
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The following quantities derived from the coordinate
transformation appear in the last equation:

i lox

B= c o’ (2.4)
_ ¢

gﬁ'_,=1$axf’ 2)
i v 0xTox

8= X Za e 2o
g :=det(g,), 27
| [ (2 2 o

ri=- {5; (Ve B+ [ /3" fﬁ‘B-’)]}- (238)

Each of these quantities has a physical interpretation,
which we now explain. Readers familiar with these ideas
may skip to the next section.

The shift vector § gives the relationship between the two
coordinate systems on nearby surfaces of constant time.'
Let the line of constant {£'} have coordinates {x’} at the
lower hypersurface and {x!_ .} at the upper hypersurface.
From the definition of the shift vector in Eq. (2.4), it is clear
that

XEL L+ dr) 2 X(E 1) — o dt. (2.9)

As we illustrate in Fig. 1, if one starts at any given point
at time 1, then by time  + dr the {x'} coordinates will have
shifted by an amount equal to the shift vector times ¢ dt,
relative to the {¢'} (inertial) coordinates. The shift vector '
will in general be a function of both {x}} and «.

We now introduce the spatial metric tensor g;, which we
have defined in Eq. 2.5. Its name comes from the fact that
the distance d! between two points whose coordinates differ
by 4Z’ in the original coordinates and by dx’ in the shifting
coordinates is given by the Pythagorean theorem:

A=Y da'di'='Y g,dx' dx’,

i=1

(2.10)

Q=1

That this gives Eq.25 for g, is readily seen by
substituting the following transformation from d&f to dx’
into the first version of the Pythagorean theorem:

(2.11)

' This is just the standard definition of the shift vector in the 3+1
formalism of numerical relativity [1].
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FIG. 1.

Shift vector f'.

The next tensor that appears in the general form of the
wave equation is the inverse metric tensor given by Eq. 2.6.
This is the matrix inverse of the metric tensor,

Z 878y =90},

F=1

(2.12)

as can easily be seen by substituting Egs. (2.5)and (2.6) into
the above.

The final quantity we need is I/, a measure of the
acceleration of the shifting coordinates with respect to the
old ones, given by Eq. (2.8). We will leave the full derivation
of ' to Appendix A, but to illustrate our interpretation of
it as an acceleration term, we shall explicitly evaluate it in
the case where the new coordinates are obtained from the
inertial ones by a simple shift independent of position. Then
the shift vector #' is only a function of time, and the spatial
metric g, is just the unit matrix:

(2.13)
It is not difficult to see that in this case the coefficients I'?

reduce to:

) 1 dpt
M= ———, 2.14
c dt ( )

FIG. 2. Grid in original coordinates, showing true distances.
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FIG. 3. Grid in new coordinates.

Since the shift vector gives the speed of the {x'} coordinates,
the last expression implies that the 7 coefficients are
essentially the acceleration.

Note that if there is no acceleration, the only essential dif-
ference from the normal wave equation is the transpor! term
B - V¢, which arises as well in hydrodynamical problems. We
will see that the local stability properties of the algorithms
we study are determined mainly by ', not I, which is one
reason we expect our analysis to have much wider
applicability than just to problems involving the wave
equation.

Having derived the form of the wave equation in our new
coordinates, we now establish a grid for formulating
difference equations in these coordinates. By assumption,
we take the time-interval A+ between successive surfaces of
constant time to be uniform (independent of position} and
constant (the same for any pair of surfaces). We take each
grid point to have a fixed spatial coordinate position x’, and
for convenience we take the spacing between grid points Ax'
to be uniform in cach coordinate direction. As seen in the
inertial frame, the grid deforms itself as in Fig. 2. The
corresponding picture in the i’-coordinate frame looks
much more regular (Fig. 3).

3. THE ONE-DIMENSIONAL CASE

3.1. Finite Difference Approximation

The one-dimensional wave equation allows us to study
shifting grids in a relatively simple fashion. The added
complication of extra dimensions will be treated in the next
section.

In one spatial dimension, the metric, shift, and accelera-
tion coeffients reduce to scalar functions:

gll{xa l)= g(x’ f),

Bl(x, 1)=f{x, 1),
Flix, t)=F(x, ).

(3.1)

Because the metric scales the squares of the coordinate
distances (Eq. (2.10)), it is convenient to define the linear
scale function s(x, t) by

s(x, ty = /glx, 1) = 0&/dx,

(3.2)

Az ‘
i+l
{
At
i
xI ] .
i-1 i i+l
F1G. 4. Computational molecule.
so that the spatial proper distance is given by
di=s(x, 1) dx. (3.3)
Using this expression, Eq. (2.3) becomes
(i_ﬁl) ﬁ+gﬁﬂ ]"% La_zf_() (3.4)
52 oxt ¢ dxadt dx ctarr )

For the finite difference approximation to this equation
we employ the usual notation:

&l == (i dx, j 40). (3.5)

We define the first and second centered spatial differences as

S A — A

RORAIRG (36)

829 =%, — 2%+,
It is important to note that with the last definitions
(8,)?# 62, We can aiso define analogous differences for the
time direction.

We now write the finite difference approximation to the

differential operators that appear in Egq. (3.4) using the
computational molecule shown in Fig. 4. We have

¢ -2+ b1
(d1)?

where F, is the truncation error whose principal part is

(40
- @+

Similarly, for the mixed derivative in space and time we find

E,= (3.8)

S g i
O N L)
with
E, = M4 G200+ (A0F (0,539 + .
(3.10)
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For the second derivative in the x direction we use an
implicir approximation of the form

A 241
(ai"”“i[ (dx)’ T (ax) ]”‘ )[(A )]*E

(3.11)

where 8, is an arbitrary parameter that gives the weight of
the implicit terms. If 8, =0 the approximation is explicit,
while if 8, =1 all the weight 1s given to the initial and final
time-steps of the molecule in the figure. Note that the last
equation is symmetric in time. The error for this x derivative
is

(4x)

E.\’X = - 12

(054))—

(At)
= (3.12)

(0707¢)i+

Finally, for the first derivative in x we take

i+l =1 7
(a‘r¢){=—22[5 Sk +5-‘¢" ]+(1—9 )[5 9 :|+E

24x

24x 24x
(3.13)

where we have used again an implicit approximation with a
different parameter 8,. The truncation error E_ is

E. =

2
[("”) (234)) + 6,

UL |+

(3.14)

We can now write down a second-order finite difference
approximation to Eq. (3.4),

1 8, it |
p (1) 310 v 2014 00000211

pﬁ

Lo — o8 1= (917 =281+ /7]

_pledi} r
2

g . . ,
<R 050 45001+ (1= 015,470 -
(3.15)

where p is the “Courant parameter” [3] given by

p=cAdAt/dx. {3.16)
The coefficients {s, §, I'} appearing in Eq. (3.15) should be
evaluated at the point (i, j) that corresponds to the center of
the molecule.
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To arrive at the final form of the difference equation we
multiplied it through by (At). This means that the overall
truncation error is now

Ey s =O[(4x)* (4:¥] + O[(41)*], (3.17)

Equation (3.15) is well studied in the particular case when
B=0r=0 and s=1[4]. It is important to note that,
because we use centered differences in the transport term,
the above finite difference approximation wili be implicit
whenever the shift vector is different from zero, even when
¢, = 8, =0. Therefore the use of implicit approximations for
the spatial derivatives does not add any extra numerical
difficulty.

We shall need to know how much numerical work is
involved in using the implicit scheme. Suppose there are N
spatial grid points. Then Eq. {3.15) is to be solved for the N
values {¢*', i=1,.,N} at the final time-step. The
equation for index / relates three such values, at points
{i—1,1, i+ 1}. The system of equations therefore has the
matrix form

G471 = f(¢7, ¢, (3.18)
where 42, is a tridiagonal NxN matrix, and the
inhomogeneous term f is constructed from field values at
the first two time-steps. Solving a tridiagonal matrix involes
O N) operations. Since we also need &{N) operations for the
solution of an explicit scheme, we see that the use of an
implicit method in one dimension will increase the number
of operations per time-step by at most a multiplier,
independent of the number of grid points. Against this, the
implicit scheme for certain choices of 8, and 0, can, on a
fixed grid, take much larger time-steps, limited only by
accuracy considerations. In the next section, we shall show
that this property of the implicit scheme in one dimension
can, with suitable modifications, be extended to grids that
shift essentially arbitrarily fast.

3.2. Local Stability: Definition and Analysis of the Implicit
Scheme on a Shifting Grid

It is well known [4] that the implicit approximation to
the wave equation can be made unconditionally stable in
the case when f=/7"=0 and s=1 by using an implicit
parameter 8, = 5. We are interested in studying under what
conditions this property is preserved in the case of a shifting
grid. The shifting grid introduces a major difficulty: the coef-
ficients in the equation generally depend on both position
and time. This complicates the definition of stability.

This difficulty means that an analytic stability analysis
must be local; we will actually only consider the stability of
the difference equation obtained from Eq. {3.15) by, at each
point (x, 1), taking the coefficients to be constant, with the
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values corresponding to that point. We feel that this is not
a very restrictive assumption, since in practice, instabilities
usually appear as ilocal phenomena [4], with the fastest
growing modes having wavelengths comparable to the grid
spacing. Moreover, if the coefficients in the difference
equation are not practically constant over a few grid points,
then we are probably not approximating the original
differential equation adequately anyway.

We will start then by considering the nature of the
solutions of the differential equation in a very small region
around the point (x, 1). As usual, we look for a solution of
the form:

Blx, 1} = e™e™~ (3.19)

Substituting this in Eq. {3.4) gives the following “dispersion
relation” for a:

kl 1/2
at=kﬁcic|:}3+ikFJ ; (3.20)

The general solution for a wavenumber £ is
dix, t)=e™[Z e '+ Z &™), (3.21)

with Z_, and Z _ arbitrary constants.

Clearly, if I'#0, then one of the independent solutions
will grow with time, but the other one will decay because of
what we shall call the analytic boundedness condition:

le®+ig™=1|, =1, (3.22)
This does not mean that the system is physically unstable,
but only that in an accelerating coordinate system (I"# Q)
the wave equation does not have purely sinusoidal solu-
tions. One can understand this intuitively in the following
way: Consider a sinusoidal solution in a static coordinate
system. From the point of view of an accelerating observer,
the frequency of this solution will be changing with time
{he will be seeing more and more crests per unit time), This
change in frequency will have important local effects. As a
crest approaches our accelerated observer, he will see the
wave function rising faster than would an observer moving
at the same speed, but not accelerating, hence the
appearance of locally growing modes in our analysis.
Similarly, after a crest is reached, the accelerated observer
will see the value of the wave function falling faster than
would a uniformly moving observer. It is not difficult to see
that the difference between the growth rate in the first case
and the decay rate in the other, as seen by our two
observers, will be the same, This is the origin of the analytic
boundedness condition given above.

The presence of the growing modes is crucial for our local
stability analysis. Since the solutions of the differential
equation can grow with time, we cannot ask the solutions of

the finite difference approximation not to do so. What we
are entitled to ask is for the numerical solutions not to
grow faster than the corresponding normal modes of the
differential equation. Our stability criterion is, therefore:
a difference equation is locally stable if every solution for
a given wavenumber k is bounded in time by a solution of the
differential equation for the same k,

Bearing this in mind, we now proceed to an analogous
analysis of the solutions of the finite difference scheme. We
look for a local stability condition around the point {n, m)
by making the substitution:

¢ = ()" e, (3.23)
Substituting the last expression in the finite difference
approximation (Eq. (3.15)) we find a quadratic equation in
i of the form

A+ By +C=0, (3.24)
with coefficients given by
q ={B”o2 (slz—ﬁ’z) [cos(k dx)—1] — 1}
+ ip sin(k Ax) [ﬁ—%(c A!)F], (3.25)

B:{zu—e,)pZ(S—lz—ﬁ?) [cos(kAx}—1]+2}

—ip(1 — 8,)(c 4¢t) Isin(k dx), (3.26)
1
C= {Glpz (?—ﬁz) [cos(k Ax)—1]— 1}
. &,
— ip sin{k 4x) ﬁ+—2—(c AN, {3.27)
The two roots of this equation are
~ B+ (B*—440)'"
V.= 2A , (3.28)
and the general solution of the difference equation is
g =" L2 (0 )T Z (o)) (3.29)

It is not difficult to see that the coefficients 4 and C have
the property

[A|?=|C|?—20,p°B(c 4t) Tsin(k 4x),  (3.30}
which implies that

| =]C/A)# 1 (3.31)
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This contrasts with the differential case, Eq. (3.22), where
the product of the magnitudes of the two fundamental
solutions was one. Since the ratio |C/A] depends on the
value of k in Eq. {3.30), there will always exist wavenumbers
for which the product |y, ¢ _| exceeds one. This would
scem to be undesirable from the point of view of stability,
but we can eliminate it as a potential problem by setting
from now on

#,=0. (3.32)
This means that we will use an implicit approximation only
for the second spatial derivatives (8, #0) and not for the
first spatial derivatives (8, =0). Since from now on we will
have only one 8 parameter, we will change notation now

and define 8 :=8,. The solutions of the difference equation
now satisfy

. g =1 (3.33)
Next we introduce the awmplification measure M,
Mi=me(|u’l+|2a|l!l_i2), (3.34)

and analogously for the solutions of the differential
equation. The amplification measure bounds the growth in

k Ax =3.14 ST Ax =0.00
s =0.00 3 =0.00
5
4 L
z
21+
3
L1
o
)
B
et
%
1
0 +— — :
0 1 2
p/s

the magnitude of any normal moede in one time-step. Our
local stability condition is then equivalent to

MNum“<-MAnas (335)
where My, and M, are the amplification measures
for the finite difference approximation and the differential
equation, respectively.

When all the parameters are free to take any value,
Eq. (3.35) is very complicated, and it is then difficult to find
its consequences analytically. We shall therefore study this
equation numerically, in order to find regions of the
parameter space in which the finite difference scheme is
stable.

First let us consider the case of a static grid, § =0, F'=0.
This case has, of course, been studied analytically (4], and
it is known that if 8 < 3 the generalized Courant stability

condition is
2
E) '-<-h —J—_’
(s (1-28)

while if § > 3 the scheme is absolutely stable. In Fig. 5 we
show graphs of both the numerical amplification measure
(solid line) and the one corresponding to the differential
equation (dotted line). We have only plotted the functions
for k Ax = n because this turns out to be the worst case. The

(3.36)
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FIG, 5. Stability on a static grid. In the lefi-hand figure, we treat the explicit scheme, where we find, as expected, that instability sets in for a Courant
parameter p/s > 1. On the right, we see that a fully implicit scheme (# =0.5) is stable for all time-steps, again as expected.
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FIG. 6. Stability on a uniformly shifting grid. The figure on the left has a grid speed 0.9 times the wave speed. On the right the grid moves at 1.1
times the wave speed. In both cases we have set #=} and I"=0 (no acceleration).
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FIG. 7. Stabitity on an accelerating grid. For twe different modes, the finite-difference amplification measure (solid curve) lies below that of the
differential equation (dotted curve). This means the finite-difference scheme is stable, at least for these modes.
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first graph shows how for #=0 the scheme is stable for
values of the Courant parameter p/s that are smaller than
one. However, when this parameter takes values slightly
larger than one, the numerical ampilification measure begins
to grow very fast. In the second case we see that for =4
the scheme is locally stable for all values of the Courant
parameter, in agreement with the known stability condition
given above.

The next group of graphs (Fig. 6) shows the effect of a
uniform shift. In both graphs we have assumed that there is
no acceleration (7= 0), and we have taken = 3 in order to
avoid any instability of the type seen in Fig. 5. The first of
these shows that the scheme remains locaily stable for all
values of the Courant parameter, even when the grid speed
sfl is very close to one. However, in the second graph we see
that, as soon as sf becomes larger than one, the scheme
turns unstable for all values of p. In this last case there is no
stable choice of time-step. This is a very important property:
The finite difference scheme becomes unconditionally
unstable whenever the shift is faster than the speed of the
waves.

Finally, in Figs. 7 and 8 we consider the effects of an
accelerating grid for the particular case when: =1, sg=1,
and 's’F Ax=1. In Fig. 7 we show the behavior of the
amplification measure for the finite-difference equation and
the differential equation for two different normal modes
{two values of k). As we expect, the amplification measure
corresponding to the differential equation M,,, is no
longer one. For the first graph we have £ 4x = 1 and for the
second k Ax=2. For the smaller wave number (larger
wavelength) the amplification measures for the differential
and finite-difference cases are relatively close to each other.
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FIG. 8. Stability on an accelerating grid. Here we show a surface plot
of the difference between the analytical and numerical amplification
measures. This difference is always positive, which means that the finite-
difference scheme is stable in the whole region.

As the wavenumber increases, the (finite-difference
amplification measure falls [urther below that of the
differential equation, so that the finite-difference scheme
remains stable (although less accurate). Figure 8§ shows a
surface plot of (M .., — M.y ) In the region:

pise(0,2),  kdxe(0,m),

We ciearly see how (M 4., — Mnum) = 0 1n the whole region.
Since k Ax = = corresponds to the smallest wavelength that
can be represented on the grid (1= 24x), we find that the
finite-difference scheme will be stable for all modes.

We have searched through other values of I', and we have
found that, although the details of the graphs change,
the qualitative behavior is preserved. The acceleration
pararreter I thus seems to have ro important effect on the
stability of the scheme.

In summary, our stability analysis shows that the finite
difference scheme given by Eq. (3.15) will be locally stable
for all values of the Courant parameter p if the following
conditions are satisfied:

e 91 = %,
- 82 = 0,
(3.37)
- sfl<1,
« I irrelevant.

The limit on J is inconvenient in many problems, where it
is desirable to have grids shifting faster than the wave speed.
We turn now to a method for removing this restriction.

3.3. Causal Reconnection of the Computational Molecules
3.3.1. Causality Problem

The causal structure of a grid shifting faster than the wave
speed is particularly clearly illustrated in the original (£, ¢)
coordinates. In Fig. 9a we see how, for a very large shift, the
individual grid points move faster than the waves; that is,
they move outside the light-cone.? Since the differential
equation propagates data along this cone, it seems plausible
that the instability found in the previous section arises from
the fact that the difference scheme attempts to determine the
solution at points on the final time-step using data that are
outside the past light-cone of these points.

This suggests that we should not build the computational
molecules from grid points with fixed index labels, but
instead use those points that have the closest cawusal
relationship (Fig. 9b). We shall now proceed to show

2 From here on we will adopt the language of relativity and refer to the
characteristic cone of the hyperbolic equation as the “light-cone.”
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Light cone \

a Non-causal molecule.

Light cone \

b Causal molecide.

FIG. 9. Causal computational molecule. In both figures, the dashed
lines represent the light-cone, and the thick solid lines show the
computational molecule. (a)shows the usual molecule that follows the
motion of the grid points. (b) shows the reconnected molecule, where we
pay attention to the causal structure instead.

analytically how such a reconnection can stabilize the
scheme.

In order to build this causal molecule let us consider then
an individual grid point at the last time level. We look for
that grid point in the previous time level that is closest to it
in the causal sense. Having found this point, we repeat the
procedure to find the closest causally connected point in the
first time level. In Appendix B we give a simple aigorithm
for finding these points in an integration of the wave ¢qua-
tion. The algorithm adapts easily to other linear hyperbolic
systermns. We shall return in a later paper to its generalization
to nonlinear equations and, in particular, to the case of
shocks in hydrodynamics. First we consider the general
constraints on the time-step that causal reconnection
imposes, and then we address the issue of how much extra
computational effort causal reconnection may involve,

3.3.2. The Causal Reconnection Condition

Since we permit the grid to move with an arbitrary
non-uniform speed, there is no reason that these causaily
connected points should be in a straight line in either the
original inertial reference frame (&, 1) or in the moving
reference frame (x, 7). In the moving coordinate system
(x,t) the relationship among these three points may
generically look something like that shown in Fig. 10,

Accordingly, we introduce a new local coordinate system
(x', ') adapted to the three given points. In order to do this,
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FIG. 10. Causally connected grid points.

it is convenient to introduce the interpolating second-order
polynomial that can be obtained from these three points,

(t—1ty)

2
Pit)=A4 > + B(t —1,5) + xq, (3.38)

where 1, is the time at the central point of the molecule, x,,
the position of that point, and

4= x:a+dr_2-xfuz+xrg—dr , B:=(x!u+dl—x’0—4’ )
(41) 24t

(3.39)

We define the new local coordinate system adapted to the
causal molecule by

fi={x— — P{1),
X' = {x—x,) - P(1) (3.40)
t =t

It can easily be seen that this new coordinate system {x’, ¢')
moves with respect to the old one (x, t) with a speed B at
time =, and with a constant acceleration 4. Since in
general the value of the coefficienis 4 and B will change
from molecule to molecule, the above change of variables
must be repeated for each molecuie. We assume that this
can be done in a smooth manner; this may not be possibie
in a nonlinear system, if the characteristics depend on the
solution.

In the primed coordinate system, the differential equation
has exactly the same form as before {see Eq. {3.4}), except
for the substitutions:

A{t—1,)+ B
C b

BB+ I"—»F—%. {(3.41)

In the same way, the finite difference approximation will
have the same form as before (Eq. (3.15)), except for the
substitutions,

B A
Bopro,  ror-Z, (3.42)
c c?
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where the term with (1 — ;) has disappeared because in this
case the coeflicients should be evaluated at the center of the
molecule, where r=1¢;.

Since the original finite difference approximation could
be made stable as long as Eq. (3.37) was satisfied, the
analogous condition for a finite-difference scheme adapted
to the new local coordinates takes the form

] B\?
?—([3+?) > 0.

We will say that the three given points form a proper
causal miolecule when the last condition is satisfied. In order
to find when this happens, we will start by defining the
effective numerical light-cone of the point x,, as the region
between the lines:

(343)

x. () =x,+ (—ﬁié) c(t—tp) +% Te?(t—1,)%. (3.44)

This numerical light-cone will coincide with the exact
light-cone when
ap

20

of oI
dx ox 0

=—=0. 345
ox ot ( )

We will also define the axis of the numerical light-cone as
the line

x 1) =x, = Belr—1) + 571 —1)°. (3.46)
We will now show that if x, , , and x, _,, are inside the
numerical light-cone of x,, then the three points will form
a proper causal molecule. From the definition of the
numerical light-cone we see that if x4 and x,_,, are
inside it then

xlo+dl=xa(At)+D+: *’Crg—Ar:-ch(hAt)+D—9

{347)
with

At ¢4
D+,D_e[—c—-i,5—i']. (3.48)

§ 8

The coefficients 4 and B will then be given by
D,-D_ ., D .+D_

=— —_— = —, (349
B Be+ A0 A=Tc*+ @n: (3.49)

which in turn means that

B 11 A 2 2
(“?)6[_?3} (F_F)E[_s(cm)’s(cm)}‘

(3.50)

From this it is easy to see that condition (3.43) is indeed
satisfied; this is, the three points do form a proper causal
molecule. Moreover, the absolute value of the acceleration
in the new local coordinates will be bounded, and even
though this does not affect the stability of the finite
difference scheme, it does improve its accuracy.

In order to be able to form proper causal molecules
everywhere, we must guarantee that two logically distinct
conditions hold. If we call the central point at 7, the
“parent” and the points at t, £ At the “children,” then every
parent must have two children and every child must have a
parent:

1. Every parent must have two children. There must
always be at least one grid point in the upper and lower time
levels inside the numerical light-cone of any given point in
the middle time level. This can be guaranteed if we ask for
the distance between grid points to be smaller than the
spread of the smallest light-cone, that is,

2¢ 4t
X€&——0, 351
* max(s) ( )
which implies that
. (1
2p min (E) =1. (3.52)

(Without loss of generality, we assume in this section that
Ar and hence p are positive.)

2. Every child must have a parent. All the grid points in
the upper and lower time levels must be inside the numerical
light-cone of at least one point in the middle time level. This
requires that the distance between the axes of the numerical
light-cones of two consecutive grid points must be smaller
than the spread of the minimum light-cone.

Let us therefore consider two consecutive grid points x,
and x,=x,+ Ax. The distance between the axis of their
light-cones at the next time level is given by

d, =1(x,)2 (41)— (x,), (41)]. (3.53)
Using the definition of x, we find that
dy=|dx—c At[B(x3)— f(x,)]
+3(c 4t [D(x2) — T'(x )], (3.54)

In the same way we find that the distance between the axis
of the light-cones at the previous time level is
d_=lAx+c At[f{x;) - B(x,)]

+3(cde) [£{x) =)l (3.35)
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The maximum of these two is

d=|dx+c Mt P(x,)— Blx,) T+ 3(c 41)° [1{x) — [(x1)]]-
(3.56)

Let us assume now that both § and I are continuous
functions. Then we can expand them in a Tavlor series
around the point:

xl +x2
= . 5
. (3.57)
We then find that, to second order in Ax,
) 1 ar
d=|dx+c At Ig' +§ (c d1)? [a—x Ax] . (3.58)

where the derivatives are evaluated at the point %.

The condition that the maximum value of this distance
should be smaller than the spread of the minimum light-
cone is now:

2c d1

dys-~—
max{d) o

oy (3.59)

Using now the expression for d, we can rewrite this as

B 1 gy max [
axl-l»zp (Ax)” max [aﬂl

(3.60)

1
2p min (u)zll-rpdxmax
s

This is the “no orphans” condition, that every child point
should have a parent. Since we want this to be true for ali
grid points, it must hold for all x.

We call Eq.(3.52) and (3.60) the causal reconnection
conditions: when they are satisfied, one is guaranteed that
causal molecules can be formed everywhere.

It is clear that if the derivatives of £ and I are too large,
it will be impossible to satisfy the second of the causai recon-
nection conditions, Eq. {3.60) (no orphans). This can be
avoided if we require that § and I" change very little from
one grid point to another:

or
Ax max <1, Ax max P <. (3.61)

As we mentioned before, if this is not the case our finite
difference approximation is unlikely to be good anyway,
and a more refined grid spacing should be used.

Another interesting feature of condition {3.60}) is the fact
that, whenever f'is not uniform, there will always be a value
of p large enough for the condition to be violated. This sets
an upper bound on the time-step, which can be understood
if we examine the effects of a non-uniform acceleration on

two adjacent numerical light-cones. If the acceleration
increases with x, the numerical light-cones will eventually
converge and pass through each other at a large enough
time, even if they were diverging initially. Similarly, if the
acceleration decreases with x, the numerical light-cones will
eventually diverge, even if they intersect each other for a
while. Clearly these situations do not arise in the exact
(differential) case because they would break the causal
structure of the solutions. We must therefore conclude that
the numerical light-cones will not approximate the real
light-cones properly when we have a time-step large enough
for these effects to occur. However, if I is such that (3.61)
holds, then the upper limit on A¢ will be very large indeed,
much larger than the Courant limit, and so large that the
accuracy of the integration must be breaking down anyway.
Moreover, for any given time-step condition (3.60) can
always be satisfied for a small enough grid spacing Ax.

3.3.3. Numerical Overheads of Causal Reconnection

Note that causal reconnection does not change the
fundamental structure of the difference equation, since it
does rot affect the relations between points at the final
time-step. Therefore, even with causal reconnection, the
equation will have the form

Bt =LAl 00 Y, (3.62)

where f* is a different function, which reflects the fact that
causal reconnection identifies different points at time-steps
j and j—1 to use to generate the points at the final
time-step. Therefore, any algorithms that are used without
causal reconnection for the solution of this tridiagonal
system of equations can be used equalily well with causal
reconnection.

There will, of course, be an overhead associated with the
search for causally related grid points. In a one-dimensional
problem with ¥ grid points, this will require only @(N)
operations, since once the causal molecule of one grid point
has been constructed, the causal molecule of its neighbor
will, by continuity, usually differ by at most one spatial shift
at any time level. In more than one dimension, the search
should still scale lineariy with the number of grid points,
since again by continuity the causal molecuie of any point
can usually be guessed from that of any of its neighbors.

We have found that for the one-dimensional wave
equation, the implementation of causal reconnection given
in Appendix B can multiply the computation time by
something like a factor of two. But for a more realistic
problem, such as general relativity, where there are many
dependent variables per grid point, the overhead of
searching for the causal structure will be no different than
for the simple wave equaticn, so it will represent a small
percentage of the overall computing time.
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FIG. 11. Oscillating grid, non-causal approach.
3.4. Numerical Examples of Causal Reconnection from which we deduce that
As an example of the methods that we have developed in )
the last sections, we will consider a grid that is oscillating in I'= Aw sin(wr). {3.64)

the original coordinates (&, ). The scale and shift functions
are given by
s(x, )=1,

B(x, t) = A cos(wt), (3.63)

This grid turns out to give a very good illustration of all the
properties we have mentioned so far. In the calculations we
have taken c=1.
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In Fig. 11 we show two calculations using the finite
difference approximation given by Eq.(3.15). In these
examples we have not taken into consideration the causal
structure. The figures show the evolution of a Gaussian
wave packet that was originaily at rest at the center of the
grid. In both cases we have taken w =196, and we show the
situation after 35 time-steps (3.5 periods of oscillation of the
grid ).

A = 1,30 w = 68.00

ALCUBIERRE AND SCHUTZ

In the first graph 4 =1, the maximum shift equals the
speed of the waves, but for all the rest of the time the shift
is less than one. At the end of the calculation there is no
evidence of any instabilities. In fact, we have integrated this
for a very large number of time-steps with the same result:
no instabilities appear,

For the second graph we have taken 4 = 1.1; the maxi-
mum shift is now slightly larger than the speed of the waves,

Ax = 0.10

At = 0.10 z - cé_go
Analytical Solution Usa{x,t) p = 1.DO T
10
L 4 i | Il nA 4
—+ } + } + - -+ t t
—10
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FIG. 12, Oscillating grid, causal reconnection.
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although even here the grid spends most of its time at speeds
less than one. By the end of the calculation an instability has
started to form. It exhibits the characteristic feature of
finite-difference instabilities, that the shortest wavelengths
are the most unstable.

In Fig. 12 we compare the direct, non-causal, approach
and the causal approach for a larger shift amplitude. We use
the same initial Gaussian wave packet as before and take
A= 1.3, @w=6. Here the instability appears very fast in the
direct approach (after only 25 time-steps). With causal
reconnection, however, the calculation remains stable. We
have carried out the same calculation for many more time-
steps, and also for larger values of 4 (up to A = 15), and the
results are the same: no instabilities develop in the causal
approach.

Therefore causal reconnection of the computational
molecules seems to cure all the local instabilities on grids
that move faster than the waves. We will see that in more
than one dimension it will also guarantee local stability for
rapid shifts, but only after we cure a further instability that
arises in operator-splitting methods for small velocities.

4. THE MULTI-DIMENSIONAL CASE

4.1. How to Dresign an ADI Scheme for a Hyperbolic System
4.1.1. Fully Implicit Scheme

We shall begin our discussion of stable integration
schemes in more than one dimension by introducing ADI
schemes in a way that makes our time-symmetric ADI
method emerge naturally, and which makes it clear how
to generalize it to other hyperbolic systems in a
straightforward manner. ADI is basically a device for
implementing an implicit integration scheme in many
dimensions without the enormous computational over-
heads that the direct implicit scheme would involve. We
begin our discussion, therefore, with an examination of the
direct implicit scheme and its computational demands. We
shall concentrate on two dimensions, but the generalization
to more is straightforward.

The general wave equation (Eq. (2.3)) in two dimensions
is

4 ‘ 3%
xx _ rxy2 Xy __ @gxgy
[e™— (B ) g+ A" = 16" 35
N o 6 28" ¢ 28" 0%
R 21 2 LA
+Ls (B)]5y2+ ¢ dxdt ¢ dyar
O 0b_ 10
Mt gy ¢ PPE 1

In the finite difference approximations to this equation,
we will use the notation

‘;ﬁj = ";,,gj,.;

(4.2}

that is, we will suppress the spatial indices and write them
only when the possibility of confusion arises. The finite
difference approximations to all the differential operators
that appear in Eq. (4.1) have the same form as in the one
dimensional case, except for a new term that did not exist
before,

03,4
aaxy e 3

(0.0,8) =

where the spatial differences are defined in the same way as
before, and the truncation error is

As we learned to do in the one-dimensional case, we will
use only explicit approximations for the first spatial

derivatives. We can then write our second-order implicit
finite difference approximation to Eq. (4.1) in the form

f# ‘ ‘ ‘
PPLe™ - (51| § 026 45260+ (1- 65781
g = (6]
<318 ol )+ (- 002 |

3 X

+5 (g7 - BI0.0,¢) + % (8,971 - 0,4"7")
26 6,0 N -HFE .8

_ ”—(C;f) I(3,89)— (¢ 297+ ¢/ )=0.  (45)

In this equation we have assumed for convenience that
the spatial increment is the same in both directions, and we
have defined the Courant parameter in the same way as
before. As in the one-dimensional case, to arrive at the last
expression we have multiplied through by (4£)2. The
truncation error is therefore of order

Eqs5=OUdx) (401 + OT (4611, (4.6)

Equation (4.5} is the most direct finite difference
approximation to the original differential equation in two
dimensions. We call it the “fully implicit” scheme. As in the
one-dimensional case, it takes the form of a matrix equation

Dot = flp, 7). (4.7)
However, as is well known, the numerical solution of this
equation is considerably more time-consuming than in the
one-dimensional case, and the computational demands
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increase very rapidly with the number of dimensions. This is
due to the fact that, if we have N grid points in cach of n spa-
tial directions, the matrix 4, will have N” rows and columns.
Most importantly, this matrix will nor be tridiagonal: it may
be possible to arrange that the nearest neighbors in, say, the
x-direction of any point should occupy adjacent columns,
but those in other directions will be [ar away in another part
of the matrix. The matrix will still be sparse, but the number
of operations involved in solving it may be very large
indeed, in the worst case involving of order N*" operations
at each time-step. Even if a well-designed relaxation method
is used, the number of operations will in general increase
faster than N*,

ADI schemes offer a systematic way around this problem,
usually affording considerable savings in computational
effort with, as we will show, no sacrifice in accuracy.
However, while the fully implicit scheme may be expected to
be as stable against grid shifts in # dimensions as in one, this
is not true of ADI schemes, and we shall have to be careful
to design a stable one.

4.1.2. Designing ADI Schemes: How to Make the Operator
Factorizable

Alternating direction implicit (ADI) methods [4] reduce
the numerical work involved in an n-dimensional problem
by modifying the finite-difference scheme in such a way as to
replace the original large sparse matrix 4, by one that can
be factored into a product of tridiagenal matrices related to
3_for each spatial direction, If we assume that we have the
same number N of grid points in all directions, we will have
to invert a series of N" ! tridiagonal matrices of size N x ¥
for each spatial dimension. This means that we will need
only @(nN") operations to solve the system. We sce then
that the number of operations for the ADI scheme wiil scale
with the number of grid points in the same way as it does for
an explicit method.

The reason that one can contemplate replacing the
original operator 9, with a different one is that the fully
implicit finite-difference ¢quation is only an approximation
to the differential equation, so if we modify it by adding
extra high-order terms that are of the same order as those
neglected in the original approximation, the accuracy of the
scheme will not be affected. If we can then choose these extra
terms to change the operator acting on the function at the
last time level ¢! into a factorizable one, we will have
speeded up the solution by a huge amount.

For our two-dimensional wave equation, the operator
acting on ¢/ is (see Eq. (4.5)):

3=~ 145 (88 +$%5,)

022 g = (VTS L - ()0 (48)

We want to add high-order terms to this expression to
transform it into a product of one-dimensional operators of
the form of the similar term we had in the one-dimensional
case (Eq. (3.15) with 8, = 0)*:
359,
pﬁx 8 XX X
= {12 o ire- 516

. 9

Let us define & to be the difference between these
operators:
R4 ;=_@’2—- /N (4.10}

Then we can rearrange
(Eq. {4.7)) 1o read

the fully implicit equation

D" =S ¢ NV T (4.11)
Now, this is not directly any help, since although we have
the factorizable operator 45 on the left-hand side, we have
unknown terms in ¢/*' on the right. However, let us
consider the following related equation:

234t = f(¢% ¢V + T (4.12)
This equation is in a form that can be solved easily, since
the unknown ¢’*' appears only with the operator J5.
Moreover, since in the limit 4¢ — 0 we have ¢/ ~ ¢/ 7!, in
that limit Eq. (4.12) approaches Fq. (4.11), which 1is the
original fully implicit equation. This fully implicit
approximation is itself only a valid approximation to the
original differential equation in the same limit, so it follows
that Eq. (4.12) also approximates the differential equation
in that limit. (It need not be as good an approximation, of
course; the error terms of the original equation {4.11) may
be smaller than those introduced by the change to
Eq. (4.12). We will address this point beiow.)

There is nothing unique about changing #¢/* * to #¢’ to
make the equation factorizable. One could change #¢” to
any combination of terms that limits to #¢/* as Az -+ 0.
The different ADI methods make different choices of these
terms. We shall see that the standard choices produce
equations that are very unstable when the grid shifts, but
that by imposing the simple physical requirement of time-
reversibility one obtains a uniquely defined ADI scheme

¥ This form of the factorized operator is not unique, there are many
different operators that one could choose instead of _Q"xé}.. See, for
example, [Sand 6].
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where the even and odd parts of the operator & are defined
by

2 402
g._ P 5 (B _;)6
‘/z - 4 ﬁ \(ﬁ _v) 4

[g=—(8")*]

x 53 {[g7 —(BY] 8} (4.19)
n 30 N
o= =E B8~ (B'71})
+ L™ — (7Y 6%BY8 )1 (4.20)

This effectively ensures that we apply the same modifica-
tion to the ¢/ ' terms as to the ¢/ terms in producing
a factorizable equation that limits to the fully implicit
equation as the time-step goes to zero. We will see that, by
so preserving the time-symmetry of the original equation,
we have also produced a method that is just as accurate as
the fully impiicit method and, perhaps more importantly, is
unconditionally locally stable on grids shifting at any speed
up to the wave speed.

4.1.4. Intermediate Values and the Implementation of ADI
Schemes

Whichever ADI method we choose to use, we will always
produce an equation of the form

By’ =AY + B, (4.21)

where 7 and 4 are spatial linite difference operators whose

specific form will depend on the method chosen. Looking at

the definition of 95 in Eq. (4.9), we see that the last equation

can be decomposed into a system of two coupled equations
as

¥ 79 o N2 2 |
{1 s ey 6} 4

2
=g (4.22)
_p_ﬁ_r _ 29 xx _ fAxy2 2 RN
1=, =S L = (371 5% 4+
=s/¢' + B, (4.23)

where the first equation defines the so-calied intermediate
value ¢*/ ),

These two equations give the simplest ADI split of the
finite difference approximation. In order to solve the system,
one first solves the second equation for ¢*/+ ! using values of
¢ in the previous time levels. This operation involves solving
a tridiagonal system of equations for each fixed value of the
y-index. One then solves for ¢/ using the first equation,
again solving only tridiagonal equations. In the general case
of an n-dimensional problem, this procedure will take us to

a system of » equations and n — 1 intermediate values. Each
equation employs an operator acting only in one of the
spatial directions.

It is important to realize that the splitting of Eq. (4.21)
given above is by no means unique. One may find many
different spiittings of the same equation, and some may
prove to be more computationally efficient that the one we
have given above. However, the differences will only be in
the algebra {and in roundoff errors): different splittings are
only different ways of writing the same ADI scheme.

4.1.5. Accuracy of ADI Methods

The different methods of forming o and 4 will differ in
general in their accuracy and stability. To find the accuracy
of the different ADI schemes on shifting grids, we start by
considering Lees’s first method. In this case we must add to
the left-hand side of Eq. (4.5) the following term:

P =)
= —Epoupe e - )

0 ‘ .
~ET RS L - (B B 9]
(g™ — BV 2B ¢ )

482
G (D LR (T

BY)
X6y (¢ —¢/7 N1, (4.24)

The order of this term is found by replacing differences
with derivatives:

P )
~ -"_a_ ‘_azi
~ 2634 B [ﬁ 5 a:]
-oetan {5 (e - (8 52|

XX a2 iz_ r 62¢
)
62
5 A0 (g (BT
2

é a8
X@ [(g - (ﬁ )2] ayz at]
=0{(41)) + O({41)* )+ O((A41)°).

(4.25)

From this we can see that the principal part of the trunca-
tion error introduced by the new terms is of order (4¢)?,
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which is in fact one order less than the original accuracy of
Eq. (4.5). Using Lees’ first ADI decomposition reduces the
accuracy of the original scheme. This is only true, however,
when we consider a moving grid. From the last expression
it is clear that for a fixed grid (#*= fi*=0), the truncation
error introduced by this method will only be of order (4¢)°,
as is well known.

When we do the same analysis for the case of the ADI
scheme based on Lees’ second method, we find that the
principal part of the truncation error introduced by the new
terms is of order (Ar)* for a shifting grid. The accuracy of the
original scheme is therefore preserved. In principle, one
would therefore prefer Lees™ second method. However, we
will see below that the second method is far more unstable
than the first when the grid shifts, so its higher accuracy is
of limited usefulness.

For the time-symmetric ADI scheme, the principal part of
the truncation error introduced by the extra terms is again
of order (A+)?. This method is thus as accurate as the fully
implicit one. We will see that it is also stable.

4.2, Local Stability Analysis

We turn now to the all-important question of the stability
of the ADI schemes that we have described in the last
section. In the same way as in the one-dimensional case, we
will start by studying the nature of the solutions of the
differential equation (Eq. (4.1)), and we will again consider
the solutions in a very small region around the point (x', 1),
assuming that the coefficients remain constant in this
region.

Moreover, for simplicity we will assume that we can take
the functions g** and B* out of the difference operators in
the expression for & (Eq. (4.20)). Again, if these functions
change rapidly from cone grid point to the next, the accuracy
of the finite-difference scheme on this grid is probably poor
anyway.

4.2.1. Solutions of the Differential Equation

Following the same procedure as in the one-dimensional
case, we will look for solutions of the differential equa-
tion (4.1) that take the form

Blx, 1)y = e Kgtlox, {4.26)
where k is the two-dimensional wave vector. We denote its
components by k' and define the associated covector
(one-form) components &; by

k= g k. (4.27)
Substituting into Eq. (4.1} and solving for «, we find the
dispersion relation:

o, =clk; ) £ Lk k) + ik, TN (428)

581/112/1-5

This is a simple generalization of Eq. (3.20). Again we have
the analytic boundedness condition
le*+ie=12 = 1. {4.29)

Therefore, if one of the solutions is growing, the other is
dying at the same rate.

4.2.2. Local Stability of the Difference Equations

We will now proceed to the local stability analysis of the
different numerical approximations. We look for numerical
solutions to the finite difference approximations of the form

¢m — !/]nrec‘[k_‘n_( + k_‘.n'.-}d.t’

Hyily

(4.30)

where we have used our simplifying assumption that
Ay =Ax. By substituting this equation into any of the
finite difference approximations, we shall always obtain a
quadratic equation for ¢ of the form
Ay 4 By + C=0. (4.31)

The coeflicients in this equation will depend on the
particular approximation used. We call the two solutions of
this equation .

As in the one-dimensional case, we define the numerical
amplification measure,

Myum 1=mfx(|'4'l+|2, %), {4.32)
and we take our local stability condition to be
MNum“<-MAna' (4'33)

One general consideration applies to all difference
schemes, It is not difficult to see that the analytic bounded-
ness condition equation (4.29) will also hold in the
finite difference case when the following condition on the
coefficients in Eq. (4.31) is satisfied:

Al =]C]. (4.34)

Lees’ FIRST SCHEME. Lees showed that for a static grid
his methods are stable for all time-steps if 6= 31. In the
shifting case, the coefficients of the quadratic equation for
Lees’ first method are

A= {] — lp,B1 Sin(k_t Ax) —pzﬂ[g-‘f-\’_ [ﬁ\)l]
x [cos(k, dx)—17}
x {1~ ipB” sin(k, 4x)— p?0L g™ ~ (8*)]

x [cos(k, Ax)—1]}, (4.35)
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B=—(2p*(1 —0){Lg™ — (§*YJlcostk, 4x)— 1]
+ g™ —(8") cosk, 4x)— 1]}
—2p% g™ — BB} sinlk, dx)}sin{k, Ax)
—ip? Ax[I'*sin(k, 4x)

+ 17 sin(k, Ax)] +2),

C=—({1—ipp*sin{k, Ax)—p*0[ g™ ~ ($)°]
x [cos(k, Ax)—1]}

x {1 —ipp*sin{k, 4x)— p*B[ g™ — ($*)")
x [cos(k, Ax}—1]}

+2p°0{[g™ — (f*)*1[cos(k, 4x)— 1]

+ [g™ —(8*)*1[costk, Ax)— 11} =2).

(4.36)

(4.37)

It is clear that these coefficients do not satisfy the bounded-
ness condition Eq. (4.34).

We shall test the stability condition given by Eq. (4.33) on
Lees’ first method by numerically calculating the amplifica-
tion measure from the roots of Eq. (4.31). For simplicity, we
consider the case where

g.Y.( —
ge=

=,
0,
F'=a,

(4.38)

We do not believe this restricts the generality of our conclu-
sions; from our analysis of the one-dimensional case, the
restriction on I'' should not cause a problem, and the
particular values of the metric tensor are unlikely to have
a determining effect on stability.

The results of our local stability analysis appear in
Fig. 13, where we show the following region of the shift
vector space:

g, B e (0, 1.2).

Since |B| = 1 corresponds to a grid shifting with a speed ¢,
the region considered in the graphs will include grids that
shift faster than the waves. We have considered 50 x 50
uniformly spaced values of the shift vector inside this region.
For a given point in the shift vector space, we find the
maximum value of the quantity:

M
R :=_ﬂ’
MAna

using 10 x 10 different values of the wave vector k,

k., k,e(0,2m),

ADL LEES FIRST

Proax

M Log,o(max{Myy,/My.,))

= 10

ENENR
AA W
= mm
o

AN

Al
=
N

A
o
[»]

LI E

AN A
[
-y

—

ADL: LEES FIRST

Pray = 10
8- 05 Log,y{max{Myy/ M)
1.2
> 2
< 2
1
< 1.8
< 18
0.8
< 1.4
< 1.2
0.6
< 1
< 0.8
0.4
< 0.6
< 04
Q0.2
< 02
o . L =90
G 0.2 0.4 Q.8 0.8 i 1.2

FIG. 13. Stability for a method of Lees first type.

and, for each wave vector, 100 different values of the
Courant parameter p in the interval (0, 10}.

Having found R_,, we plot its value on a logarithmic
scale. In the graphs, values of logo( Ry,.,) smaller than or
equal to zero (R, < 1) are represented by clear regions,
and values larger than two (R, = 100) by the darkest
regions. It is not difficult to see that the clear regions will
correspond to values of the shift vector for which the finite
difference scheme is locally stable (at least for p e (0, 10)),
and dark regions to values of the shift that give rise to
instabilities. The darker the region, the more violent the
instabilities.
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It is important to note that the presence of a dark region
does not mean that for the given value of B the scheme will
be unstable for all g (0, 10}, but only that we must expect
instabilities for at least some values of p in that interval.

In the upper graph in Fig. 13, we show the case where
=4 The finite difference scheme is unstabie for at least
some value of p at all values of the shift vector. This
instability becomes much stronger whenever one of the
components of the shift vector is greater than the speed of
the waves. We recall that even in the one-dimensional case,
the implicit scheme for 8 = } is only conditionally stable, so
the behavior here is no surprise. This figure also shows
how the introduction of an operator splitting has broken
the rotational symmetry of our problem; it is no longer
the light-cone which is the important feature, but the
rectangular region in which the light-cone is inscribed.

The lower graph corresponds to the case § = 5, which is
unconditionally stable in the one-dimensional case. In two
dimensions, the scheme is still locally stable for values of the
shift vector along the direction of the coordinate axis, just as
the one-dimensional scheme was. However, instabilities
appear for speeds in other directions. These instabilities are
weak compared to those for speeds faster than the wave
speed, but their presence will nevertheless be significant, as
we will show in the examples of numerical integrations that
we give below.

We have looked at larger values of the parameter 8, but
the situation does not improve beyond #=1. Lees’ first
scheme is therefore not very useful for grid speeds that are
not aligned with the coordinate axis.

LEES’ SECOND ScHEME. We next turn to Lees’ second
method, for which the coefficients of the quadratic equation
are

A={1—ipBsin(k, Ax)
~ P00 g™ — (B*Y1[cos(k, 4x) ~ 17}
x {1 —ipB*sin(k, 4x)}
= p*0[g"* — (") 1[cos(k, 4x) —~ 1]}, (4.39)

B=—(2p*(1 - 0){[ g~ — (")’ ]cos(k, 4x)—1]
+[g* = (p*)*I[cos(k, Ax) — 11}
—2p°g* sin(k, Ax) sin(k, Ax)
—ip? Ax[ I sin(k, Ax)+ 7 sin(k, 4x)]
+2ip*0{ B[ g — (B¥)*] sin(k, dx)[coslk, Ax)—1]
+BvLg* — (8%)* ] sinfk, Ax)[cos(k, dx)~1]}
+20%0°[ g™ ~ (B 1Le™ —(B*)°]
x {cos(k, Ax)—1][cos(k, dx)—~1]+2), (4.40)

C=—(p’0{[g

(Y ) cos(k, dx)~ 1]

+ g™ — (8 Mcos(k, Ax)—1]}

—ip[ ¥ sin(k, Ax) + ¥ sin(k, 4x)]

+ p*Bp7 sinlk  Ax) sin(k, 4x)

—ip0{p*[ g™~ (B")* ] sin(k, Ax)[cos(k, 4x)— 1]

+ B L™ — (BT sin(k, Ax)[cos(k, 4x)— 11}
—p*0* g™ — (B 1™ — ()]

x [cos(k, dx)—1][cos(k, dx}—1]—1). (4.41)
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Again, these do not satisfy the boundedness condition
Eq. (4.34). In Fig. 14 we again portray the cases for =
and §=1. The situation is even worse than before; the
instabilities in Lees’ second scheme grow faster than for the
first scheme, and even for 8>  there is only a very small
region of stability just around the origin. Clearly, this
scheme will not be practical for any moving grid.

THE TIME-SYMMETRIC SCHEME.  We have found that both
standard AD! methods become unstable when the reference
frame is moving. Neither satisfied the condition equation
{4.34). Now we look in the same way at the time-symmetric
scheme. The fact that this scheme does indeed satisfy
Eq. (4.34) can readily be seen from the form that the
coefficients of the quadratic equation take in this case:

A={1—ipB~sin(k, Ax)— p*0[ g — (8*)’]
x [cos(k, Ax)—1]}
x {1 —ipf*sin(k, Ax)—p*0[ g — (8")*]

x [cos(k, 4x)—11}, (4.42)

B=—{20°(1-0){[g™ —(p*))[cos(k 4x)—1])
+[g* — (") ]leoslk, Ax)— 17}
—2p°g™ sin(k, Ax) sin(k, 4x)
—ip? Ax[ ¥ sin(k, Ax)+ ¥ sin(k, 4x)]
+2p%0%[ g — (B I g ™ — (BT

x [cos(k, 4x)— 1][cos(k, 4x)— 1] +2), (4.43)

C= {1+ ipp*sin(k, 4x)— p0[ g — (B
x [cos(k,  dx)— 1]}
x {1+ ipf” sin(k, 4)— p?0[ g ~ (B*)']

x cos(k, Ax}—1]}. (4.44)

Figure 15 shows the local stability analysis for this
scheme, where again we show what happens for 0 =Land

=1
For the first case, the situation is no better than before;
the scheme is unstable for practically every value of the shift
vector. However, when we set § =3, the value that gave
absolute stability in the one-dimensional case, the scheme
becomes locally stable for every value of the shift vecior
inside the rectangular region that inscribes the light-cone. We
find that this stability is maintained for larger values of 6.
What we see here is effectively a “light-cone stability
condition,” except for the fact that instead of a cone we now
have a rectangle, as a consequence of the fact that the ADI
splitting breaks the rotational symmetry of the problem.
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FIG. 15, Stability for the time-symrmetric scheme.

In the general case, this local stability condition can be
expressed as

g —{pV=0 {no sum), {4.45)
where [ may refer to any spatial direction.

The time-symmetric scheme has also the important
property that in the stable region the numerical solutions
will always be non-dissipative (at least in the non-
accelerating case); that is,






68 ALCUBIERRE AND SCHUTZ

1. Every parent has at least two children. There must
always be at least one grid point in the upper and lower time
levels inside the numerical light-cones of all points in the
middle time level. It is easy to see that this will require:

2p min(g9)'/2 =21 i {4.57)

2. Every child has a parent. All the grid points in the
upper and lower time levels must be inside the numerical
light-cone of at least one point in the middle time level. We
guarantee this by asking that the light-cones of the points in
the middle time level should cover completely the upper and
lower time levels, in other words, that the union of the
intersections of these light-cones with both the upper and
lower levels should be the entire grid.

Let us consider a square of nearest neighbours in the
middie time level. We want their numerical light-cones to
cover the whole quadrilateral area defined by the points
where the axis of those light-cones intersect the adjacent
time levels. A sufficient condition for these to happen is to
ask for the sides of this quadrilateral to be smaller than the
spread of the smallest light-cone divided by ﬁ {this factor
arises from the fact that the diagonals of a square are \/5
times larger than its sides).

Following now the same procedure as before, we can
show that this condition takes the form

2 "
min(g”] 142
Vi

2 {1 +2max{d,;, dy,) + [max(d,,, dy)1*

+ [max(dy,, dyo)1?) VA (4.58)

where the quantities 4, are defined as

op’| (dx)?
@*:p(dxléﬁ 3

(axy or
R VTS

2
ax' dx*?

)

(4.59)

and the maximum should be taken over all values of x’
As in the one-dimensional case, the last condition is valid
only to second order in Ax.

Conditions (4.57) and (4.58) are the causal reconnection
conditions in the two-dimensional case. They will guarantee
that proper causal molecules can always be formed.

4.4. Numerical Examples

To test the finite difference methods that we have
developed, we will consider two different situations: a grid
moving with a uniform speed, and a grid rotating with
constant angular velocity.

4.4.1, Uniformly Moving Grid

We will first study the case of the grid moving with
uniform speed, in order to show the advantages of the
time-symmetric scheme. If the grid is moving with velocity
v={v*, v7), it is not difficult to see that

gi=10; (4.60)
g =v'/c, (4.61)
I =r+=0. (4.62)

Using these values for the coefficients, we have studied the
numerical solution to the wave equation for a number of
examples, comparing the threc different ADI methods
developed earlier. The first set of graphs {Fig. 16) show the
result of one such calculation for a scheme of Lees’ first type.
In the graphs we show the grid region [(0, 10) x {0, 10)],
and we calculate the evolution of a Gaussian wave packet
originally at rest at the point {7, 7). For simplicity, we have
imposed reflecting boundaries. We have taken a time-step
such that p =1, which means that we are well beyond the
Courant limit.! The evolution is followed using a grid with
a speed given by

v=(4 1),  |v[=0707 <1,

where we have taken c=1.

We see how an instability is beginning to grow even
though the grid is moving slower than the wave speed. This
is precisely in accordance with the results of our local
stability analysis. This instability grows slowly, as expected.
Nevertheless, it is clear that its presence is unacceptable in
a calculation of any duration, If we use a method of Lee’s
second type, the instability takes longer to develop, but
once it appears it grows very fast, much faster that with
Lees’ first method. The fact that the instabilities in general
take longer to appear with Lees’ second method can be
traced to the particular wave modes that are involved. As we
can see in the graphs, the instabilities in Lees’ first method
are associated with relatively long wavelengths (several grid
points), and since these modes are aiready present in the
tnitial data, they start growing right away. In Lees’ second
method, however, the instabilities turn out to be associated
with very short wavelengths (one or two grid points), which
do not contribute significantly to the initial data. This
means that, even though the instabilities are more violent
with this method, it will take a2 long time for the unstable
modes to grow to the scale of the real solution.

In the next set of graphs (Fig. 17) we have applied the
time-symmetric scheme to the same problem. The instability

4 In an n-dimensional problem, the Courant limit for the stability of an
explicit scheme is p = l/\/E.



STABILITY OF IMPLICIT METHODS

LEES FIRST Grid With Uniform Speed LEES FIRST Grid With Uniform Speed
{Non—Causal Approach) v, =050 v, =050 {Non—Causal Approach) vy =050 v, =050
Time Steps = 0 Ax = 010 p =100 Time Steps = 15 Ax = 0.10 p =100
¢ = 0.50 9 =0.50

LEES FIRST Grid With Unitorm Speed LEES FIRST Grid With Uniform Speed
(Non—Causal Approach) v, =050 v, =050 {Non-Causal Approach) v, =050 v, =050
Time Steps = 30 ax = 0.10 p =100 Time Steps = 45 Ax = 0,10 = 1.00
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FIG. 16. Uniferm shift vector: Lees’ first scheme.
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TIME SYMMETRIC Grid With Uniform Speed TIME SYHMMETRIC Grid With Uniform Speed
(Non—Causal Approach) v, =050 v, =050 {Non—Causal Approach) v, =050 v, =050
Time Steps = 0 Ax = 0.10 p = 1.00 Tirme Steps = 15 ax = 0.10 £ = 1.00
¥ = 0.50 ¥ =050
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{Non-Causal Approach) v, = 0.50 v, = 0.50 {(Non—Causal Approach) v, = 0.50 v, = 0.50
Time Steps = 30 Ax = 0.10 g = 1.00 Time Steps = 45 Ax = 0.10 r = 1.00

4 = 0.50 ¥ = 0.50

FIG. 17. Uniform shift vector: time-symmetric scheme.
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FIG. 19. Rotating grid: causal reconnection.
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has completely disappeared. This is again in agreement with
our previous conclusions and shows the superiority of this
method.

We have performed similar calculations for many
different values of the grid speed and we have found essen-
tially similar results. The time-symmetric scheme remains
stable as long as the grid moves slower than the waves,
while the other schemes present instabilities for quite small
grid velocities.

44.2. Rotating Grid

In order to show the advantage of causal reconnection
when the grid moves very fast, we will consider now an
example with a grid rotating with the constant angular
velocity w. 1t is not difficult to show that

gy=9dy (4.63)
93] i [i3]
pr=-2y p=Tx (4.64)
2 2
F‘z_%x, F‘:A%y (4.65)

To test for locai stability when using causal reconnection,
we take

w=025

in units in which ¢ =1 and the grid extends over the range
{{—35,5)x(—35,5)). This means that the centers of the
edges of the grid will be moving faster than the wave speed,
with a linear velocity of 1.25, while the corners will be going
even faster.

The next graphs show the results of a time-symmetric
calculation, first using a “direct” calculation (fixed com-
putational molecule) and second using causal reconnection.
Again we use a time-step such that p=1. In Fig. 18, we
show the evolution of a Gaussian wave packet originally at
rest at the center of the grid, using the direct approach. We
see how after 32 time-steps an instability has appeared close
to the boundaries. Only five time-steps later, this instability
has grown so large that the original wave is no longer visible
(the scale is automatically adjusted to display the largest
value of the function).

Figure !9 shows the same calculation using causal recon-
nection. The instability is not present. In fact, we have done
the same calculation with much larger values of the angular
velocity (up to =231, where the edge is travelling at
15 times the wave speed), and the scheme remains locally
stable.

These examples demonstrate dramatically that time-

symmetric ADI can be married with causal reconnection
and that, together, the two techniques provide a robust
difference approximation to the wave equation on a moving
grid. These methods are stable, offer all the computational
advantages of ADI schemes, and remain second-order
accurate in 4x and 41,

A comment on how to enforce causal reconnection at the
boundaries seems in order here. In all our examples we have
taken the practical approach of setting the value of the wave
function to zero whenever a complete causal molecule can-
not be formed. This can happen not only at the boundaries,
but also at inner points close to the boundaries for large
enough grid speeds. The philosophy behind this approach is
simple: If the causal molecule is incomplete, then we would
need information from outside the grid to evolve the wave
function at that place. If we impose the condition that no
information can come from the outside, then we must take
the value of the wave function as zero at that point. This
requirement can be relaxed somewhat be using an outgoing
wave boundary condition whenever we can still find a
causally related point in the previous time level, but not
before that. At places where one cannot even find a causally
related point in the previous time level, the only legitimate
thing one can do is to set the value of the wave function to
ZETO.

5. CONCLUSIONS

The wave equation we have studied here is a prototype
for more complex equations of mathematical physics, such
as the Einstein held equations. In fact, many hyperbolic
systems in mathematical physics can be formulated in terms
of the wave operator. One would expect the instabilities we
have found here to be generic: any numerical approxima-
tion to a hyperbolic system on a shifting grid should exhibit
them.

Only experience will show us just how well our cures for
these generic instabilities transfer to more interesting
equations, However, the instabilities we have described here
are cured by the application of two clear physical principles,
causality and time-reflection invariance. It seems clear that
it would be asking for trouble not to incorporate these
principles into the design of algorithms for the numerical
integration of any fundamental physical equations.

We have, of course, studied in detail only one second-
order differential equation in one and two dimensions. The
restriction to two dimensions is not important. The physical
principles involved do not depend on the number of dimen-
sions, and the savings obtained by using an ADI scheme
instead of a fully implicit formulation increase rapidly with
the number of dimensions. In many physical systems, 1t is
advantageous to formulate the equaticns of the theory
as first-order differential equations. This is true in
hydrodynamics and in many studies of general relativity.
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The general principles of causality and time-reflection
invariance extend in a simple way to such systems. Time-
symmetric ADI should prove relatively straightforward to
apply to more complicated systems of equations, provided
the original differential equations embody time symmetry.

Causality may be less straightforward in nonlinear
equations, where the structure of the characteristic cone will
depend on the solution, and so the exact causal relation-
ships between time-levels cannot be decided independently
of solving the equations. However, causal reconnection is
implemented via an inequality; one requires that grid points
should be within the characteristic cones of their relatives at
the previous time-step. In most cases, one would hope that
the inequality can be assured simply by extrapolation from
the behavior of the characteristic cones on the known
time-steps.

An important area for the application of the techniques
we have developed here would be numerical fluid dynamics,
where the study of wave phenomena in supersonic flows is
a natural place to expect causality problems and where the
interest in three-dimensional problems makes ADI essential
in many cases.

In some restricted situations, it may be straightforward to
apply these techniques; for example, a neutron star moving
supersonicaily through a grid in general relativity will, if
treated in the standard way, use acausal computational
molecules. Using causal reconnection, adapted to the
characteristics of the fiuid problem, should prevent
instabilities of the type we have found here.

But the application of our techniques to more general
problems in fluid dynamics will not be automatic. Causal
reconnection will have to be géneralized to deal with
hydrodynamic shocks. At a shock, the regular causal
structure of the fluid breaks down. This does not mean that
causal reconnection cannot be implemented there. On the
contrary, the fact that a causal algorithm is constantly
mapping the structure of the characteristics means that it
can be programmed automatically to locate and to identify
shocks.

The idea of correctly representing the causal structure of
the original differential cquation is not new; existing
methods for handling shocks and related transport
problems, such as upwind differencing [9] and Godunov
methods [10], are already based on the local structure of
the characteristics of the fluid. These ideas have also been
introduced in the numerical study of steady supersonic
flows, where the direction of flow behaves like a time coor-
dinate and the equations become hyperbolic. Integration
methods have been developed that use retarded differences
in the upstream direction to maintain stability [11, 127. All
these methods differ from causal reconnection in the fact
that they keep using only the nearest neighbours to build
the computational molecules. We have recently become
aware, however, of a paper by Seidel and Suen that

introduces an idea they call “causal differencing,” that is
very similar to our causal reconnection [13].

Fluid dynamics also presents special challenges to time-
symmetric ADI. The usual equations of inviscid gas
dynamics are time-symmetric, but the presence of viscosity
or shocks introduces a fundamental irreversibility into the
problem. We hope to treat the fluid dynamic problem in a
future paper.

We are confident, however, that the present techniques
will generalize easily to problems in numerical general
relativity, such as that of the motion of black holes through
fixed grids. Causal reconnection should allow the equations
to remain stable and causal. Moreover, the computational
advantages offered by ADI schemes, of permitting stable
large time-steps (provided the physical situation allows such
steps to remain accuraie) while avoiding 1ime-consuming
sparse-matrix solutions, can be obtained without sacrificing
accuracy or stability. Tt is hard now to imagine any sttuation
in numerical integrations of the vacuum field equations of
general relativity where one would use implicit methods
without employing time-symmetric ADL

APPENDIX A: DERIVATION OF WAVE EQUATION
ON A SHIFTING GRID

In this appendix we will sketch the derivation of Eq. (2.3)
by making use of elegant tensorial techniques. There are
many alternative approaches, of course, and a reader
unfamiliar with tensors can obtain the same result in a
straightforward, but rather long, way simply by making the
following general change of variables in the original wave
equation from the physical (inertial) coordinates {&#} to
the computational coordinates {x*}:

x'=x(gr),  x0=¢° (A1)
with the associated change of derivatives,
g dx* @ éa axtr o o
GET A ek Tae (A

The functions that we have identified as the shift vector g,
the spatial metric g, and the /' coefficients in Egs. (2.4),
(2.5), and (2.8} come out as part of the algebra. A reader
who wants an introduction to the use of tensors in
mathematical physics is invited to consult Ref. [137.

We will start from the expression of the wave equation in
a general coordinate system:

(%= (y"¢.,).. =0, (A.3)
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where y*” is the metric tensor of spacetime and the semi-
colon stands for covariant derivative. Using the explicit
expression for the covariant derivatives, the last equation
takes the form

2
w 09

ax dx'

il
r~-——=90,
Ox*

(Ad)

where the coefficients * are defined in terms of the
Christoffel symbols as
Fi ::,vari.

uv-

(A.5)

Our first task is, then, to find the inverse metric y*".
The metric in the new coordinates is given by

a&* 9Eb
/pv - ax‘u axv ﬂa!}s (Aé)
with 3, the Minkowski metric tensor:
foo= —1,
Hp=1 (no sum}, (A7)
Pe=0,  n#v

We now note that for a line of constant {¢'} we have

JE OF dx’ "
0=— = —— +—,
dt ey OX7 dt | Ot
which implies
65"_ OE" dx’
@f N ﬁxj dr {éi}- (AS)

Using now the definition of the shift vector (Eq. (2.4)) and
writing x° = ¢7 we find that

%

g
ox

T

B (A.9)

This is an important relation, and we will use it to rewrite
the metric coefficients given by Eq. (A.6).

For the mixed components in space and time of y,, we
find that

n aéf aén’
I)Oi_fi()_lgl ax’ 5x°
=ﬁj n 3_{!%
/= oxtéx”

and, finaily,

Yo =Vio= ]’ijﬁ‘i=grjﬂj- (A.10}
In a similar way we can find the coefficient yg,,
6'50 2 n aé.f z
m=(5) + £ (3)
n ) 66' aél
=—1 S—=f e
* ‘Z:] d ax/ ox
and from this we obtain
Yoo=—1+ 2,88 (A1)

We will adopt the convention that the indices of the shift
vector can be raised and lowered by using only the spatial
metric,

Bi=g {jﬁje

B=2g"B, (A.12)

where g¥ are the coefficients of the inverse of the spatial
metric matrix g ;.
The coefficients of y,,, can now be written as
—14 8,4
B; &k

Using the last expression it is not difficult to see that the
coefficients of the inverse metric y** will be given by

HY _] ﬁk
’ ‘(5f (gf“—ﬁfﬁ"})' Y

Having found y**, we will now look for an expression for the
coefficients /7', Since the original coordinates {&*} define an
inertial reference frame, the Christoffel symbols can be
expressed in terms of their transformation to the general
coordinates:

. ax}. 62§9c
T AlS
mpE dxt dx” { )
From the last expression it is casy to see that
ro.=o, (A.16)
which in turn means that
r'=9., (A7)
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